GenericDataBase: A C++ Interface to Scientific Data-Bases for Use With A++
HDF _DataBase: An Implementation of GenericDataBase Using HDF

User Guide, Version 1.00

William D. Henshaw?

Centre for Applied Scientific Computing

Lawrence Livermore National Laboratory

Livermore, CA, 94551

henshaw@linl.gov

http://www.lInl.gov/casc/people/henshaw
http://www.lInl.gov/casc/Overture June 10, 2002 UCRL-MA-132236

Abstract: We describe a simple C++ interface that can be used to save and retrieve objects from a hierarchical data-base.
Obijects are stored in a tree of “directories”, much like a unix file system. Each directory has a name and a class-name to
identify it. Any directory can contain other “sub-directories” as well as any of the following types:

e int, float, double, String or “c” arrays of these types.
e A++arrays: intArray, floatArray, doubleArray

The class Gener i cDat aBase is a virtual base class (i.e. it declares functions but does not implement them) that can be used
as a generic interface to a data-base. Applications should be written primarly with a Gener i cDat aBase so that they do not
depend on any particular data-base format. The class HDF _Dat aBase is derived from Gener i cDat aBase and implements
the data-base functions using the Hierarchical Data Format (HDF) from the National Centre for Super-Computing
Applications (NCSA). A user interested in using HDF formatted files can create an object of the type HDF _Dat aBase (in a
main program for example) and pass this object to functions that are written in terms of the Gener i cDat aBase.

1This work was partially supported by grant N0O0014-95-F-0067 from the Offi ce of Naval Research

Contents

1 Introduction 2
2 Examples 4
2.1 Example 1: Usingthe HDF_DataBase i i e e e e e e e e 4
2.2 Example 2: Writing get and put functions for a class using GenericDataBase 6
2.3 Example 2a: Writing get and put functions for a class using streaming 8
3 GenericDataBase 9
3.1 CONSIUCIONS o o o o e e 9
3.2 virtualConstructor L 9
3.3 0Perator = 9
3.4 mount(fileName,flags) 10
35 UNMOUNE . . . L L 10
3.6 flush() 10
37 AsNUll) . . 10
3.8 WrnONWarnings o 10
3.9 twrnOffWarnings e e 10
3.10 create(dataBase,name,class) e 11
3.11 find(dataBase,name,class) e e 11
3.12 locate(dataBase,name,Class) 11
3.13 find(name[],class,maxNumber,actualNumber) 11
3.14 find(dataBase db[],class,maxNumber,actualNumber) 12
3.15 put([float][double][int][aString],name) 12
3.16 get([float][double][int][aString],name) 13
3.17 put([floatSerial Array][doubleSerial Array][intSerial Array]l,name) 13
3.18 get([floatSerial Array][doubleSerial Array][intSerialArray],name) 13
3.19 put([floatArray][doubleArray][intArray],name) 14
3.20 get([floatArray][doubleArray][intArray],name) e 14
3.21 put(int] J,name,number) . . . L e 14
3.22 put(float] J,name,number) L 14
3.23 put(double[J,name,number) L 15
3.24 put(aString[J,name,number) 15
3.25 get(int[J,name,number) L e e e e e 15
3.26 get(float] J,name,number) L e 15
3.27 get(double[J,name,number) L 15
3.28 get(aString[J,name,number) L 16
329 setMode 16
3.30 getMode L e 16
331 printStatistics e 16
332 getList . . . 16
333 getlD . L 17
334 build e 17
4 HDF_DataBase 18
4.1 Implementation NOtES L 18
42 LIMITATIONS . . o e 18
1 Introduction

We describe a simple C++ interface that can be used to save and retrieve objects from a hierarchical data-base. Objects are
stored in a tree of “directories”, much like a unix file system. Each directory has a name and a class-name to identify it. Any
directory can contain other “sub-directories” as well as any of the following types:

e int, float, double, String

e A++arrays: intArray, floatArray, doubleArray

e arrays of Strings.

Using these functions the user can create a hierarchical tree of information in which user-derived class’s can be conveniently
stored.

The class Gener i cDat aBase is a virtual base class (i.e. it declares functions but does not implement them) that can be
used as a generic interface to a data-base. Applications should be written primarly with a Gener i cDat aBase so that they do
not depend on any particular data-base format.

The class HDF_Dat aBase is derived from Gener i cDat aBase and implements the data-base functions using the Hier-
archical Data Format (HDF) from the National Centre for Super-Computing Applications (NCSA). A user interested in creating
HDF files can create an object of the type HDF _Dat aBase (in a main program for example) and pass this object to functions
that are written in terms of the Gener i cDat aBase.

There is also a streaming mode where the objects are not saved in a tree structure but rather they are collected together and
saved in a a few big buffers. In streaming mode the creation of directories and the names of objects are ignored. In streaming
mode the data must be read back in exactly the same order it was written. This mode is faster and requires less storage than
the normal mode. The draw back is that the objects saved, cannot be located individually by name. Streaming mode can be
selectively turned on and off (although it should only be turned on and off once with any given directory).

We recommend that each class that needs to be saved to a data-base implement a get and put member function using
the Generi cDat aBase class, as shown in example 2. The class should be saved in a directory with a given name. The
class-name for the directory should be the name of the class that is being stored.

For more information about HDF, consult the HDF home page at ht t p: / / hdf . ncsa. ui uc. edu.

Co~NoOUWNE

(root)

X num stuff
floatArray int directory

labell

String

Figure 1: Data-base structure for example 1. Each node has a name and a class-name

2 Examples
2.1 Example 1: Using the HDF_DataBase

In this first example we show how to use the HDF _Dat aBase class to save and retrieve data from a file.

This example will create a data-base file that schematically has the form shown in figure 1.
(file / home/ henshaw/ Overt ur e/ hdf/ ex1. Q)

#include ""HDF_DataBase.h"
//
// HDF_DataBase: examplel
//
int
main()
{
ios::sync_with_stdio(Q); // Synchronize C++ and C 1/0
HDF_DataBase root;
root.mount(“ex1.hdf","1'); // mount a new file (I=Initialize)
floatArray x(Range(-1,2),Range(3,4));
X=1;
root.put(x,"x"); // save an A++ array in the "root" directory
int num=5;
root.put(num, “*num'™); // save an int in the "root" directory

HDF_DataBase subDirl;
root.create(subDirl,"stuff","directory'); // create a sub-directory, class="directory"

aString label;

label=""my label";

subDirl.put(label,"labell™); // save a aString in the sub-directory
root.unmount(); // flush the data and close the file
cout << '"\n ++++Mount the file again, read-only ++++++ \n";
root.mount('ex1.hdf","R"); // mount read-only

floatArray x2;

root.get(x2,"x"); // get X"

x2._display("Here is x2 (should be x2(-1:2,3:4)=1)");

HDF_DataBase subDir2;
root.find(subDir2,"stuff","directory");

aString label2;
subDir2.get(label2,"labell'); // get labell

45
47
49

cout << "label2 from file =["

root.unmount();

return O;

<< (const char *) label2 << "]" << endl;

(root)

ml

myClass

al

a2

float

float

Figure 2: Data-base structure for example 2.

2.2 Example 2: Writing get and put functions for a class using GenericDataBase

In this example we show how to write get and put functions for a class using the Gener i cDat aBase. The put
creates a directory of a given name into which it stores the data needed by the class. The class name for the directory is set
equal to the name of the class, “myClass”. The get function looks for a directory of a given name and class and retrieves the

data needed by the class.

(file / home/ henshaw/ Overt ur e/ hdf / ex2. C)

1 #include "HDF_DataBase.h"

2 //

3 // HDF_DataBase: example 2

4 7/

5 class MyClass

6 {

7 public:

8 float al,a2;

9 MyClass(){ al=0.; a2=0.; }

10 “MyClassQ{}

11 int put(GenericDataBase & db, const aString & name) const
12 { // save this object to a sub-directory called "name"
13 GenericDataBase & subDir = *db.virtualConstructor();
14 db.create(subDir,name, " "MyClass");

15 subDir.put(al,”al™);

16 subDir.put(a2,a2");

17 delete &subDir;

18 return O;

19 ¥

20 int get(const GenericDataBase & db, const aString & name)
21 { // get this object from a sub-directory called "name"
22 GenericDataBase & subDir = *db.virtualConstructor();
23 db.Ffind(subDir,name,"MyClass");

24 subDir.get(al,"al™);

25 subDir.get(a2,"a2");

26 delete &subDir;

27 return O;

28 }

29 3};

30

31 int

32 main()

33 {

34 ios::sync_with_stdio(Q); // Synchronize C++ and C 1/0
35

36 HDF_DataBase root;

37 root.mount('ex2.hdf","1""); // mount a new file (I=Initialize)
38

39 MyClass mi;
40 ml.al=1.; ml.a2=2.;
41 ml.put(root,”ml');

// create a derived data-base object
// create a sub-directory

root.unmount(); // Tlush the data and close the
cout << "\n ++++Mount the file again, read-only ++++++ \n";

HDF_DataBase root2;
root2._mount(*'ex2.hdf","R"™); // mount read-only

MyClass m2;

m2.get(root2,"m1");

cout << "m2.al =" << m2.al << ", m2.a2="" << m2.a2 << endl;
root2._unmount();

return O;

file

2.3 Example 2a: Writing get and put functions for a class using streaming

In this example we show how to use the streaming mode to put and get an object. In this mode only the data for each put
is saved into a long buffer. The name of the object is ignored and no new directories are created. Saving data with this mode
saves space and is faster. However, the data must be read back in exactly the way it was written. A magic number separates
each object in the buffer so that if you make a mistake when reading in streaming mode it will most likely be detected.

The previous example is changed so that the data base mode is set to st r eanfQut put Mode for the put function and
st reanl nput Mode for the get function. Only these two new lines need be added to the class.

In this example st r ean nput Mode is turned on in the sub directory created in the MyCl ass put function. When the
sub-directory is initially created it inherits the mode from its parent which in this case is the default mode of nor mal Mode.
With the mode set to st r eam nput Mbde the data saved from subsequent put’s will be streamed into 3 buffers (float, int
and double). When this sub-directory is deleted the buffers will be saved (since the buffers were originally opened in this
sub-directory). Setting the mode back to nor mal Mode would also cause the buffers to be saved.

There is also a noSt r eanmivbde which can be set. In noSt r eaniVbde any attempt to set the mode to st r eam nput -
Mode or st r eamQut put Mode will be ignored. This can be used to force all objects to save themselves in the standard
fashion. Thus the main program could call db. set Mode(Gener i cDat aBase: : noSt r eamvbde) ; in which case the
class would not be saved in a streaming mode. To override noSt r eamvbde (not normally suggested) one must first set the

mode back to nor mal Mode.
(file / hone/ henshaw Overt ur e/ hdf / ex2a. C)

1 #include "HDF_DataBase.h"

2 //

3 // HDF DataBase: example 2

4 7/

5 class MyClass

6 {

7 public:

8 float al,a2;

9 floatArray bil;

10 MyClass(){ al=0.; a2=0.; bl.redim(3,3); bl=3.; }

11 “MyClassQ{}

12 int put(GenericDataBase & db, const aString & name) const

13 { // save this object to a sub-directory called "name"

14 GenericDataBase & subDir = *db.virtualConstructor(); // create a derived data-base object
15 db.create(subDir,name,"MyClass™); // create a sub-directory
16

17 subDir.setMode(GenericDataBase: : streamOutputMode); // *** save the object as a stream of data ***
18

19 subDir.put(al,al);

20 subDir.put(a2,"a2"™);

21 subDir.put(bl,"b1™);

22

23 delete &subDir;

24 return O;

25 ¥

26 int get(const GenericDataBase & db, const aString & name)

27 { // get this object from a sub-directory called "name"

28 GenericDataBase & subDir = *db.virtualConstructor();

29 db.find(subDir,name,"MyClass');

30

31 subDir.setMode(GenericDataBase: :streamlnputMode); // **** read the data as a stream ****
32

33 subDir.get(al,al™);

34 subDir.get(a2,"a2");

35 subDir.get(bl,"b1™);

36

37 delete &subDir;

38 return O;

39 ¥

40 3};

41

42 int

43 main()

44

45 ios::sync_with_stdio(Q); // Synchronize C++ and C 1/0

46

47 HDF_DataBase root;

48 root_mount('ex2.hdf","1"); // mount a new Ffile (I=Initialize)

3

MyClass ml;

ml.al=1.; ml.a2=2.; ml.bl=5.;

ml.put(root,”ml™);

root.unmount(); // Tlush the data and close the file

cout << "\n ++++Mount the file again, read-only ++++++ \n";

HDF_DataBase root2;
root2._mount(*'ex2.hdf"","R"™); // mount read-only

MyClass m2;

m2.get(root2,"m1");

cout << "m2.al =" << m2.al << "(=1?), m2.a2="" << m2.a2 << "(=2?) \n"';
ml.bl.display("’'bl (=5?)");

root2._unmount();

return O;

GenericDataBase

This is a class to support access to and from a data-base. This class knows how to get and put the types

3.1

int, float, double, String
A++ arrays, intArray, floatArray, doubleArray

”c” arrays of Strings.

Constructors

GenericDataBase()

Description: Default constructor;

Author: WDH

GenericDataBase(const GenericDataBase & gdb)

Description: Copy constructor. Make a copy of the directory. This does not copy the data-base file.

Author: WDH

3.2

virtualConstructor

GenericDataBase*
virtualConstructor() const

Description: This function will create a data-base (of a derived class) using “new” and return a pointer to it.

Author: WDH

3.3

operator =

GenericDataBase &
operator=(const GenericDataBase & gdb)

Description: Make a copy of the directory. This does not copy the data-base file.

Author: WDH

3.4 mount(fileName,flags)

int

mount(const aString & fileName, const aString & flags)
Description: Mount a data-base file.

fileName (input): Name of the file to open.

flags (input): flags to indicate how to access the file, ”I” = initialize a new file, ”W” = open an existing file for reading and
writing, ”"R” = open an existing file read-only.

Author: WDH

3.5 unmount
int
unmount()

Description: Close the data-base file;

Author: WDH

3.6 flush()
int
flush()

Description: Flush the data to the file.

Author: WDH
3.7 isNull()
int

isNull() const

Description: return TRUE if this object is NOT attached to any file, return FALSE if it is attached to a file.
Author: WDH

3.8 turnOnWarnings
int
turnOnWarnings()

Description: Turn on warnings. For example the get functions will complain if the object they are looking for is not found.

Author: WDH

3.9 turnOffWarnings
int
turnOffWarnings()

Description: Turn off warnings.

Author: WDH

10

3.10 create(dataBase,name,class)

int

create(GenericDataBase & db, const aString & name, const aString & dirClassName)
Description: Create a sub-directory with a given name and class name.

db (output): This new object will be the sub-directory

name (input): name of the sub-directory

dirClassName (input): name of the class for the directory, default="directory”

return value: is 0 is the directory was successfully created, 1 otherwise

3.11 find(dataBase,name,class)
int
find(GenericDataBase & db, const aString & name, const aString & dirClassName) const

Description: Find a sub-directory with a given name and class-name (optional) If name="." then the current directory will be
returned. This function will "crash” if the sub-directory was not found. Use locate if you don’t want the function to crash.

db (output): This object will be the sub-directory on return
name (input): name of the sub-directory
dirClassName (input): name of the class for the directory, default="directory”

return value: is O is the directory was found, 1 otherwise

3.12 locate(dataBase,name,class)
int
locate(GenericDataBase & db, const aString & name, const aString & dirClassName) const

Description: Find a sub-directory with a given name and class-name (optional) If name="." then the current directory will be
returned. See also the find member function.

db (output): This object will be the sub-directory on return
name (input): name of the sub-directory
dirClassName (input): name of the class for the directory, default="directory”

return value: is O is the directory was found, 1 otherwise

3.13 find(name[],class,maxNumber,actualNumber)

int

find(aString *name, const aString & dirClassName, const int & maxNumber, int & actualNumber) const
Description: Find the names of all objects in the current directory with a given class-name

name (input/output): array of Strings to hold the names of the directories. You must allocate at least maxNumber Strings in
this array.

dirClassName (input): find all objects with this class name. This can be a user defined class name such as "grid” as well as
| 7, "floatArray” and "doubleArray”.

”int”, ”float”, "double”, ”’string”, "intArray”,
maxNumber (input): this is the maximum number of Strings that can be stored in name[].
actualNumber (output): This is the actual number of objects that exist.
return value: The number of Strings that were saved in the name array.

Description: To first determine the number of objects with the given class-name that exist make a call with maxNumber=0.
Then allocate aString name[actualNumber] and call again.

11

3.14 find(dataBase db[],class,maxNumber,actualNumber)

int

find(GenericDataBase *db, aString *name, const aString & dirClassName, const int & maxNumber,
int & actualNumber) const

Description: Find all sub-directories with a given class-name

db (input/output): return directories found in this array. You must allocate at least maxNumber directories in db, for example
with if maxNumber=10 you could say

ADat aBase db[10];

name : array of Strings to hold the names of the directories. You must allocate at least maxNumber Strings in this array.
maxNumber (input): this is the maximum number of directories that can be stored in db[].

actualNumber (output): This is the actual number of directories that exist.

return value: The number of directories that were saved in the db array.

Description: To first determine the number of sub-directories with the given class-name that exist make a call with maxNum-

ber=0. Then allocate db[actualNumber] and name[actualNumber] and call again.

3.15 put([float][double][int][aString],name)
int
put(const float & X, const aString & name)

int

put(const double & x, const aString & name)
int

put(const int & X, const aString & name)

int
put(const bool & x, const aString & name)

int
put(const aString & x, const aString & name)
Description: Save a float, double, int or aString in the data-base with a given name.

X (input): The object to save.

name (input): Save ”X” under this name in the data-base.

3.16 get([float][double][int][aString],name)
int
get(float & x, const aString & name) const

int
get(double & x, const aString & name) const

int
get(int & x, const aString & name) const

int
get(bool & x, const aString & name) const

12

Igr:ett(astring & X, const aString & name) const

Description: Get a float, double, int or aString from the data-base with a given name.
X (output): The object to get.

name (input): The name of ”Xx” in the data-base.

Return value : 0 if found, non-zero if not found

3.17 put([floatSerialArray][doubleSerialArray][intSerialArray],name)
int

put(const floatSerial Array & X, const aString & name)

int

put(const doubleSerialArray & x, const aString & name)

int

put(const intSerialArray & X, const aString & name)

Description: Save an A++ SerialArray in the data-base.

x (input): SerialArray to save

name (input): save the Serial Array with this name.

3.18 get([floatSerialArray][doubleSerialArray][intSerial Array],name)
int
get(floatSerialArray & x, const aString & name) const

Igli(doubleSerialArray & X, const aString & name) const

int

get(intSerialArray & x, const aString & name) const

Description: get an A++ Serial Array from a data-base.

x (output): SerialArray to get. x will be resized” to have the proper dimensions (base/bound)
name (input): the name of tha SerialArray to get

Return value : 0 if found, non-zero if not found

3.19 put([floatArray][doubleArray][intArray],name)

int
put(const floatArray & X, const aString & name)

int
put(const doubleArray & X, const aString & name)

int
put(const intArray & X, const aString & name)

Description: Save an A++ array in the data-base.
X (input): array to save

name (input): save the array with this name.

13

3.20 get([floatArray][doubleArray][intArray],name)
int
get(floatArray & x, const aString & name) const

int
get(doubleArray & x, const aString & name) const

Igr;tt(intArray & X, const aString & name) const

Description: get an A++ array from a data-base.

X (output): array to get. x will be "resized” to have the proper dimensions (base/bound)
name (input): the name of tha array to get

Return value : 0 if found, non-zero if not found

3.21 put(int]],name,number)

int

put(const int x[], const aString & name, const int number)
Description: save an array of int’s to a data-base directory.

X (input): array to save.

name (input): save the array with this name

number (input): The number of entries in the array to save.

3.22 put(float[],name,number)

int

put(const float x[], const aString & name, const int number)
Description: save an array of float’s to a data-base directory.

X (input): array to save.

name (input): save the array with this name

numberOfStrings (input): The number of entries in the array to save.

3.23 put(double[],name,number)

int

put(const double x[], const aString & name, const int number)
Description: save an array of double’s to a data-base directory.

X (input): array to save.

name (input): save the array with this name

numberOfStrings (input): The number of entries in the array to save.

14

3.24 put(aString[],name,number)

int

put(const aString X[], const aString & name, const int number)
Description: save an array of Strings to a data-base directory.

X (input): array to save.

name (input): save the array with this name

numberOfStrings (input): The number of entries in the array to save.

3.25 get(int[],name,number)

int

get(int x[], const aString & name, const int number) const
Description: get an array from a data-base directory.

X (output): save the array Xx.

name (input): name of the array.

number (input): The maximum number of entries in the array to get.

return value: The actual number of entries that were saved in the array x.

3.26 get(float[],name,number)

int

get(float x[], const aString & name, const int number) const
Description: get an array from a data-base directory.

X (output): save the array x.

name (input): name of the array.

number (input): The maximum number of entries in the array to get.

return value: The actual number of entries that were saved in the array x.

3.27 get(double[],name,number)

int

get(double x[], const aString & name, const int number) const
Description: get an array from a data-base directory.

X (output): save the array x.

name (input): name of the array.

number (input): The maximum number of entries in the array to get.

return value: The actual number of entries that were saved in the array x.

15

3.28 get(aString[],name,number)

int

get(aString x[], const aString & name, const int number) const
Description: get an array from a data-base directory.

X (output): save the array x.

name (input): name of the array.

number (input): The maximum number of entries in the array to get.

return value: The actual number of entries that were saved in the array x.

3.29 setMode

void
setMode(const InputOutputMode & mode_ =standard)

Description: Set the input-output mode for the data base. Note that any sub-directories subsequently created in this data base
will inherit this value for mode. Changing the mode from st r eam nput Mbde back to nor mal Mode will cause the
buffers to be saved in the data base. The buffers will also be saved when a directory is deleted provided that this directory
was the one in which streaming mode was initially turned on. Currently only one set of buffers can be saved in any
directory which means that within a given directory the streaming mode can only be turned on and off once.

mode_ (input) : input-output mode, nor mal Mode, st r eam nput Mode, st r eanOut put Mbde, or noSt r eanivbde. In
nor mal Mode the data is saved in the standard hierarchical manner. In st r eand nput Mode/st r eanut put Mode
mode the data is input/output continuguously from/into a buffer. The name of the object is ignored and the act of
creating new directories is ignored. In stream mode the data must be read back in in exactly the order it was written. In
noSt r eamvbde any requests to change to st r eam nput Mbde or st r eantut put Mode will be ignored. This can
be used to suggest that no streaming should be done. To overide this mode you must first set the mode to nor nal Mode
and then you can change the mode to a streaming mode.

3.30 getMode

InputOutputMode
getMode() const

Description: Return the current input-output mode for the data base.

Return value: the current input-output mode.

3.31 printStatistics

void
printStatistics() const

Description: Output statistics about the data base, such as the number of entries etc.

3.32 getList

ReferenceCountingList*
getList() const

Description: Return a pointer to a list that holds reference counted objects that are in the data base. This list can be used to
keep track of items that have been saved in the data base. Each item in the list has an ID and a pointer to an object. In
this way one can avoid saving multiple copies of objects since one can determine whether an object has already be saved.
This feature is used when saving Mapping’s to avoid multiple copies of a Mapping being saved.

16

3.33 getlD
int
getID() const

Description: Get the identifier for this directory
3.34 build

int
build(GenericDataBase & db, int id)

Description: Build a directory with the given ID, such as that returned by the member function get | D() .

17

4 HDF_DataBase

HDF _DataBase is derived from GenericDataBase and implements the functions using the HDF library from NCSA. HDF stands
for Hierarchical Data Format and NCSA is the National Centre for Super-Computing Applications.

4.1

4.2

Implementation notes

In HDF directories (nodes) in the hierarchy are called vgroups. When a vgroup is opened (attached) it is assigned a unique
vgr oup_i d. Every time we open a vgroup we need to close it. Thus in order to unount a file we must be able to find all
open vgroup’s and close them. Therefore we keep a list of objects that contain the vgr oup_i d of all the open vgroups.
These objects are called HDF_Dat aBaseRCDat a since they hold Reference-Counted Data. A vgroup may be accessed
mutliple times, but we only open it once. Each time it is accessed we increase the reference count for that vgroup. When
the reference count goes to zero we can close the vgroup. The list that holds the HDF _Dat aBaseRCDat a objects is
called dbLi st . Every element in the list will refer to a different vgroup so that the vgr oup_ d’s will be different for
all elements in the list.

A++ arrays are stored as SDS (Scientfic-Data-Sets). Since the SDS interface accesses files in a different way from the
vgroup interface we need to keep two file identifiers, f i | e_i d and sds_i d. The SDS interface does not have the notion
of lower bounds to arrays other than zero so we stored the lower bounds for each of the A++ array dimensions as an SDS
“attribute” called “arrayBase”.

float’s, doubl e’s, i nt’s, String’s and arrays of St ri ngs’s are stored as HDF vdata objects. The array of
String’ s is concatenated and stored as a single list of characters (with the different array elements separated by
the null character).

LIMITATIONS
There is no way to delete items from an HDF file, this is a limitation of HDF.

Currently 1 do not support the over-writing of data. If you put something twice with the same name it will just create
a new item with that same name. The get routine will never find it since it finds the first one it encounters.

18

